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ABSTRACT

Collision avoidance between two vehicles of constant speed with

limited turning radii, moving in a horizontal plane is investigated.

Collision avoidance is viewed as a game (in this case, the "game of two

cars" defined by Isaacs) by assuming that the operator of one vehicle

has perfect knowledge of the state of the other, whereas the operator of

the second vehicle is unaware of any impending danger. This situation

is perhaps not uncommon in encounters between a light private aircraft

and a commercial one and is taken as typical for the results presented.

The situation envisioned is that of an encounter between a

commercial aircraft, such as a Boeing 727, and a small light aircraft,

such a a Piper Commanche. It is assumed that the pilot of the commercial

aircraft has complete information on the state of the light aircraft, but

the pilot of the light aircraft is not aware of the presence of the other.

His lack of information makes the situation hazardous. He may actually

perform a maneuver to cause a collision which might not otherwise occur.

This worse case situation is examined to determine the conditions under

which the commercial aircraft should execute a collision avoidance

maneuver. Preceding page blank -ii-



The answer to this question leads to defining state space zones

of vulnerability. Three different zones of vulnerability are defined

and the boundaries, or barriers, between these zones are determined for

a typical aircraft encounter. A discussion of the methods used to obtain

the results as well as some of the salient features associated with the

resultant barriers is included.
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INTRODUCTION

The high aircraft density of both commercial and private air-

craft around large population centers precipitates the likelihood of

mid-air collisions. To avoid collisions, air traffic controllers cur-

rently attempt to keep track of each aircraft and provide ample warning

in cases where collisions "appear" imminent. Their task of keeping

track of each aircraft in an air traffic control zone can be alleviated

somewhat with the introduction of computers which visually display to

the controller the type, velocity, and direction of each aircraft under

his command. However, due to uncertainties in aircraft altitude and

heading, inaccurate information may be given to the pilots involved.

In addition there is a possibility of the controller simply not observ-

ing a dangerous situation due to the large number of aircraft involved.

An alternate approach to collision avoidance would be for a

pilot to have a "display" at his disposal. Instead of relying on the

ground controller to relay information of questionable accuracy, it

would be desirable for a pilot to have his own display depicting his

vulnerability with respect to other aircraft in his immediate vicinity.

This approach falls within the analytical "see and be seen" concept

proposed by Stodala (Ref. 1, p. 11), and will be the approach used in

this paper. The primary goal will be to determine conditions under

which collision avoidance maneuvers would be deemed necessary for an

encounter between two aircraft. With this aim in mind, we seek a

mathematical model that will lead to a reasonably simple solution and

yet, one which will retain the salient features of the problem.
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A precise problem statement requires the specification of what

knowledge, if any, each pilot has about the dynamical state of the system.

Consider the situation in which one of the pilots is "blind" and knows

nothing of the dynamical state of the other aircraft. Even though he

desires to avoid a collision, his lack of information makes the situation

hazardous. He may choose precisely the wrong maneuver and cause a col-

lision. This clearly is a worst-case situation and is the one we will

consider in this report.

Specifically, we shall replace the "blind" pilot, who wants to

avoid a collision, by a pursuer who wants to cause a collision, and we

will treat the problem as a differential game of kind (Ref. 2, p. 8)

with two players. One player, the pursuer, attempts to cause a collision

while the other player, the evader, attempts to avoid collision.

There are two basic questions involved. First, under what condi-

tions should the evader execute a collision avoidance maneuver? Second,

what control action should he take to carry out such a maneuver. These

two questions are coupled and are related to three different flight

conditions:

1. Condition Green - the state of the two aircraft is
such that if the evader continues in his current
direction with constant speed, collision is not
possible.

2. Condition Yellow - the state of the two aircraft
is such that if the evader executes a collision
avoidance maneuver, he can escape collision. But
if he persists in his current heading and speed,
collision is possible.

3. Condition Red - the state of the two aircraft is
such that, despite any maneuver by the evader,
collision is possible.
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The sets of points under conditions green, yellow, and red will be

designated by green zone, yellow zone, and red zone respectively.

This report will be primarily concerned with determining the

surfaces, or barriers (Ref. 2) in state space which separate these zones.

For simplicity, the barrier between the red and yellow zones will be

termed the red barrier, while the barrier between the yellow and green

zones will be termed the green barrier.

THE SYSTEM MODEL

The general rigid body motion of a single aircraft could involve

a state space consisting of three positional, three velocity, three

angular, and three angular velocity coordinates. Thus, the state space

for a two aircraft intercept problem could be twenty-four dimensional.

In view of the proposed method of solution (investigation of a class of

system trajectories) the mere presentation of results would be unmanage-

able.

Instead, we shall use an aircraft model of point-mass motion in

a horizontal plane at a constant speed. This model is relatively simple,

and can be reduced to a three-dimensional state space. The constant

speed assumption is a reasonable approximation for the time scale of the

maneuvers involved. As a typical case, we will consider the collision

avoidance problem to be one where the evader is a commercial aircraft

such as a Boeing 727 and the pursuer is a small light aircraft such as

a Piper Commanche.
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In modeling the system, it is assumed that each aircraft moves

in a horizontal plane at constant speed, but may turn with a bounded

turning rate. This last constraint may result from structural limita-

tions, from power limitations, or from the requirement that the air-

craft fly in a horizontal plane in which case the turning rate, ~, is

related to the bank angle, 0, and speed, v, of the aircraft by

= (g tan ¢)/v . (1)

Here g is the acceleration of gravity and the prime denotes differenti-

ation with respect to time. The lift, L, for horizontal flight is re-

lated to the weight, w, by

w = L cos 0 , (2)

and the maximum lift is given by

L = 1/2 pv2S(c) (3)
max (CL)max

where p is the atmospheric density, S is the wing planform area, and

(CL) is the maximum lift coefficient.
L max

From equations (2) and (3)

I'max =cos 1 2w/pv2s(CL)ma (4)

therefore

I'Imax (g tan IlImax)/V .
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Consider now the pursuer, P, and evader, E located in the horizontal

plane as shown in Figure 1. The pursuer is moving with constant speed

Sp while turning at a rate u. The evader is moving with a constant speed

S
E
while turning at a rate v. The instantaneous velocity vectors are as

indicated with u, v, and x3 shown positive.

In terms of an evader-centered coordinate system with the x

axis aligned with the evader's velocity vector as shown, the kinematical

motion of the pursuer relative to the evader is given by

x = S sin x + vx2 (6)
2 P 3 2

x2 = Sp cos x3 - SE - vx 1 (7)

!~~~~~~~~

x3 = v - u(8v-u (8)

The limitations on the turning rates of the pursuer and evader may be

expressed by

lul < um, Ivl < Vm (9)

We will now assume that the evader is the faster aircraft and set

SE = 1 , Sp = < 1 (10)

We further assume that the maximum turning rate of the evader is less

than the pursuer and set

v = 1 , u = 6 >1 (11)
m m
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The kinematical equations, in nondimensional form, become

x = a sin x3 + vx 2 (12)

x2 = a cos x3 1- vx1 (13)2 ~~~~~~~~~~~~~~~~~(3)

x
3

v U (14)

lul 6 , IvI <1 (15)

where the dot denotes differentiation with respect to nondimensional

time t. The coordinates x
1
and x2 must be multiplied by SE/v to obtain

length dimensions and t must be multiplied by 1/v to obtain time. Note
m

that u = + 6, u = 0, u = - 6 is a hard left turn, straight line flight,

and a hard right turn for the pursuer. Similarly v = + 1, v = 0, v = -

1 is a hard left turn, straight line flight and a hard right turn for

the evader.

It will be assumed that collision occurs if the pursuer moves

to within a nondimensional radial distance R of the evader. Collision

will include the case of tangential encounter at a radius R (see Figure

2). In state space the collision surface is defined to be a cylinder

of radius R whose axis is aligned with the x3 axis.

THE RED BARRIER - A GAME OF KIND (QUALITATIVE GAME)

Points within the red barrier represent states from which the

pursuer can guarantee collision with the evader. These points are the

analog in game theory to controllable points in control theory and are

-7-
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determined in a similar way. For systems described by first order

differential equations, without state constraints, the boundary of

the controllable set may be composed of system trajectories which are

obtained from a minimum principle (Ref. 3; Ref. 4, p. 254; Ref. 5, p.

350). (These boundary trajectories may also be thought of as abnormal

trajectories for an optimal control problem subject to the same dy-

namics.) While the boundary delineates those points which are control-

lable to a terminal set, the determination of the actual feedback

control laws used to drive the system to the terminal set from within

the boundaries represents a separate (more difficult) problem.

The red zone is similar. Solving a game of kind involves the

determination of a "game surface" with particular properties. If two

game surfaces eminating from the collision surface intersect, then the

resulting enclosed points may represent guaranteed collision points.

Again, while it may be known that collision is guaranteed in the red

zone, a solution to the game of kind (determination of game surfaces)

does not yield a priori collision maneuvers for points within the red

zone.

The game of kind was defined by Isaacs (Ref. 2, p. 200-231) and

has been extensively investigated by Blaquiere, et al (Ref. 6, p. 103-

145). The methods of these authors will be used here. Points in the

red zone are those points which are enclosed by intersecting game sur-

faces and the collision surface. A game surface and the intersection of

these surfaces is depicted in Figure 3. If u and v represent controls

which will maintain a system on a game surface, then this surface is

-9-
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defined to have the property that a control pair (u , v) will move the

system along or to one side of the surface whereas the control pair

(U , v) will move the system along or to the other side of the surface.

In effect, a game surface divides the space, at least locally, into

regions in which one or the other player can force the system to remain.

If two such surfaces emanating from the collision surface intersect,

and if the enclosed points correspond to (u , v) control (see Figure 3)

then such points are guaranteed collision points for the pursuer. Game

theory not only dictates the game surface control, but the proper points

on a terminal set (collision surface) for constructing the boundaries of

the red zone.

Red Barrier Necessary Conditions

From Theorem 6.1, p. 131 of reference 6, if u and v are game

surface controls for tE[o, tf] for the dynamical system

x = f(x, u, v) (16)

where

T n T r T
x = [x...x E.GcE , u = [u...u ]EUCE , v = [v...v ]E VCE ,

n - r -1 s -

1
and where the function f is of class C on GxUxV and if we let

H = X f(x,u,v) (17)

T N
where X = [X... X ]E E , then there exists a nonzero continuous solution

of the adjoint equation
of the adjoint equation

-11-



*T /X
X = - Ha (18)

such that for any controls 5,v other than u,v

(19)

H(X,x,u,v) = 0 (20)

for all te[otf]. Furthermore, for the problem under consideration

(boundary of red zone for cylindrical collision surface) the vector X

at the terminal surface is in the direction of the outward normal to the

surface.

From (12), (13), and (14) we thus have

H = Al(oesinx3
+ vx2) + A2(Oecosx3

- 1 - vx
1
) + A3(v - u)

H = X (asinx3 + Vx2) + X2(acosx3 -1 - vx 3) + X3(v - U)

with the adjoint system

1l = x2v1 2

2 = - X 1v

3 = a(X 2 sinx3 - 1 cosx3 ) -

(21)

(22)

(23)

(24)

Red Barrier Control

The function H is linear in the controls u and v and for

convenience is written as

H = Ylsinx3 + A2 ( Xcosx3 -1) + a u + a v
u v (25)

-12-
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where a = - X and = X2 - Xl + 3 . To satisfy (19) we conclude
U 3 V 12 21 3

+6 if a < 0
U

u = -6 if a > 0
U

singular cont

+1 if a > 0
v

v = -1 if a < 0
V

singular cont

(26)

trol if a = 0
U

(27)

trol if a = 0 .
V

That is, the signs of the "switching functions" a and a determine the
U V

controls to be used, unless the switching function is identically zero.

This latter possibility is examined by setting the first and second

order time derivatives of a and a equal to zero. We obtain
U V

(28)u = (X lC°Sx3 - X 2 sinx3 )
U 3 2 3

(29)u aU(lX sinx + X cosx3)u 1 3 2 3

(30)

v = - 1
a 

a = - X v
v 2 (31)

Thus from a = a = 0 we obtain for pursuer singular control either

u = or (sinx3+ 2cosx3) = and for evader singular control

u = 0 or (Xlsinx 3 + X2cosx3) = 0 and for evader singular control

-13-



either v = 0 or 2 = 0. It can be shown using u = = O that in each
2 ~~ ~~~~~u v

T
case the second choices require that X = 0 and hence are not possible

solutions. We conclude then that singular controls for both the pursuer

and the evader corresponds to null control.

We say that collision occurs when the pursuer is within a given

radius R of the evader. If we designate quantities evaluated at the

terminal or final time with the subscript "f", then the collision sur-

face is written as

2 2 2a E Xlf + x2 f -R = 0. (32)

The gradient to this surface (in xl, x2, x3 space) is directed

outward so that the terminal condition for the X vector may be given by

T p a(33)
f =x f

where 1 is a positive constant. We thus have

lf 
=

2 xlf (34)

X = 2 x2 f = 2 x2(35)

X3f = O . (36)
~3f=0

Substituting this information into Hf = 0 yields

x2 f/Xlf = asinx3 f/(1 - acosx3f . (37)

-14-



Condition (37) requires that a game surface trajectory be tangent to

the terminal manifold, i.e., collisions resulting from initial states

on the red barrier are "side-swipes" or "non-penetrating" collisions.

We may now examine the control possibilities at termination.

From (34-35) we see that both switching functions are zero on the

terminal manifold. We examine first the possibility of singular

control. Pursuer singular control requires that a Uf = 0. This condi-

tion along with (34), (35), and (37) all evaluated on the terminal

surface yields

cosx3f c(38)
cs3f= 

Evader singular control requires that f = - lf = 0. From (36),

3f = 0, thus from the requirement that Hf = 0 we have either 2f = 0
3f f2f

T
or cosx3 f = 1/a. The first condition would require Xf = 0 and is not

3f ~~~~~~~~~~~~~f

possible, the second condition cannot be satisfied with a < 1 (as

assigned). We conclude that terminal evader singular control is not

possible and that terminal pursuer singular control is possible when

cosx = Cl.
3f

For non-singular terminal control we observe that

uf = + 6 requires uf> 0 (39)

uf = - 6 requires uf < 0 (40)

vf =+ 1 requires < 0 (41)
Vf -

-15-



vf = - 1 requires vf > 0 (42)

By substituting (34) and (35) into (28) and (30) we observe that when

Xlf > 0 (for points on the right half of the capture circle)

Vf = + 1(43)

uf = + 6 when cosx3f > a (44)

uf = - 6 when cosx3f < (45)

and when xlf < 0 (for points on the left half of the capture circle)

vf = - 1(46)

uf = + 6 when cosx3f < a (47)

uf = - 6 when cosx3f > a (48)

Thus terminal control is uniquely specified except when cosx3f = a. At

such a point the pursuer controls u = + 6, and u = 0 all satisfy the

necessary conditions examined so far. The possibility of singular con-

trol at such a point will now be examined in further detail.

For convenience in what follows we define x
3

as the angle

between 0 and 7/2 such that a = cosx
3
. ThusY (tf) = 0 at x

3
(t) = X

3

and at x3(tf ) = 27 - x3 . A necessary condition for the singular

pursuer control u = 0 to minimize the Hamiltonian (Ref. 6, p. 69) is

-16-



(49)a (Wu) < o

Applying this condition to (29) evaluated at the terminal point requires

xlf sinx3f + x2f cosx3f 0 .i~f 3ff 2f 3f -

By use of (37) we see that this requires that

(50)

(51)sinx3f < 0

on the right side of the collision surface (Xlf > 0) and

sinx3f > 0 (52)

on the left side of the collision surface (xlf < 0). Thus singular

control is possible only at x3 (tf) = 2W - x3 with xlf > 0 and at x3(tf

= 3 with xlf < 0.
31ff

Necessary conditions thus provide for the following terminal

control possibilities for x3f E [0, 27]. On the right side (xlf > 0):

vf = +vf =+

+ 6 for x3f:
* ~~3ff

0 for x3f:

- 6 for x3f:
3ff

* *
x3 f E [0,x3 ] U [27 - x3 , 2W]

*

x3 f = 2 - x 3
x3f ~ [x 3

* *
x 3 ff E [x3, 27r- x3]-

-17-
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On the left side (xlf < O):

vf = - 1f

* *

5for x x3f E [O,x3 ]tU [2T - x3 2r]

Uf 0 for x3f: x3f x
3

(54)

uf~~ =

+ 6forx x 3f
+ 6 for x3f x3f [x3, 2 - x3

Retrograde Integration

The game surface emanating from the right side of the collision

surface (xlf > 0) will be called the right red barrier, and the game

surface emanating from the left side will be called the left red

barrier.

Trajectories which lie in the game surfaces may be calculated

by integrating the equations of motion and the adjoint equations back-

ward from the collision surface using controls obtained from the

Minimum Principle (19). Integration is initiated using the controls

given by (53) and (54). By obtaining a number of such trajectories the

nature of the red zone can be determined.

The red zone is a three dimensional set of points in x1 , x2 , x
3

space whose boundaries are composed of the barriers and the collision

surface. The red zone is perhaps best depicted by plotting x
1

vs. x
2

cross sections of it for various values of x3 . This will be the method

used here to depict the results.

-18-



For what follows, note that singular control for the evader

on a barrier is never optimal, and all references to singular control

henceforth refer to terminal u - singular control.

Trajectories which lie on the barriers are of two types. The

first type, called 1 trajectories, terminate non-singularly, i.e., with

u(tf) ~ 0. The second type, called I trajectories, terminate with

u - singular control.

To integrate backwards we define the "time-to-go"

T ~ tf - t (55)
=f

Using T as the independant variable in the equations of motion and the

adjoint equations gives

o

X1(T) = - a sin x3(T) - x 2 (T)v ,(56)

0o

x2(T) = - a cos x 3(T) + Xl(T)v + 1 (57)

0

x3(T) = u v, IVl < 1 ul 6 (58)

X (T) = - v 2 (T) , (59)
1o2

0
2 (T) = vX l (T ) (60)

o

2 ~~~~~~~~~~~~~~~~~(1)
0

X3 (T) = a{ l (T) cos X3 ( T ) - 2 (T) sin x3 (T)} , (61)

where (0) denotes differentiation with respect to T. The "initial

-19-



conditions" for these retro-equations are given by (32) and (34-37)

where the final time must now be interpreted as an initial time.

For this particular problem an analytic solution exists for

the above equations and is easily constructed through the use of

another change of independent variable.

Let [T 
0
, T ] be a (retro) time interval over which a and a
0 s u v

do not change sign, i.e. starting with

u( O) = (TO ) = 0 0, (62)

define

T A first time a = 0 after being non-zero (63)
u= u

T A first time a = 0 after being non-zero (64)
v = v

then

T A min (T
u
, T ) (65)

s = v

The H trajectories are obtained by integrating the retro-

equations using non-singular control on the interval 0 < T < T . If

*

T is the (retro) time at which the pursuers control switches from

singular to non-singular, then the H trajectories are obtained by first

integrating the retro-equations using singular control on the interval

0 < T < T and continuing integration using non-singular control on the

*
interval T < T < T

-- -5 

-20-



Let To = 0 for R trajectories and T
o

= T for II trajectories,

then x3 (T) is a constant on the interval TO < T < T for both T and TI

trajectories. Thus the following relation exists between differentia-

tion with respect to T and differentiation with respect to x3:

d( ) d( )
Usn- ti= (u - v)
d T dx

U t3

Using this relation, the retro-equations become

x'= - Q(a sin x + x2v)/v

x2 = Q(1 - a cos x3 + xlv)/v ,

1 - 2,

2 = Q 1 '

(66)

(67)

(68)

(69)

(70)

A3 ' = aQ(X cos x3 - A2 sin x3,/v
3 1 3 2 3

Q A v/(u - v)

x3(T) = (u - v) (T - T
0
) + x3(T

0
) ,

and ( )' denotes differentiation with respect to x3.

-21-
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It should be noted that the change of (independent) variable

given by equation (73) is subject to two constraints. First the actual

range of x
3
must be such that the corresponding value of T is > T O.

Second, the change of variable is meaningless if v = u. Since v ~ 0,

this could occur only if 6 = 1. However, for a collision avoidance

problem in which the pursuer has a larger maximum turning rate (6 > 1),

this difficulty does not arise.

The II Trajectories

Integration of equations (67 - 71) yields the non-singular

trajectory (subarc) equations

x 1 x (T0 ) cos Q[x3 - x3 (TO ) ] - x2 (TO ) sin Q[x - x (T )]

+ c[cos x3 - cos{Q[x3 - x3(T)] - x3(T0)}]/u (74)

+ {cos Q[x -x3 (T )] - l}/v ,
3 3 0

x 2 = X 1 (T
0
) sin Q[x - x3(T0)] + x2 (T0) cos Q[x - x3 (T0)]

- a[sin x3 + sin{Q[x3 - x3 (T0)] - x3(T0)}/u (75)

+ sin Q[x3 - x3 (T0)]/v ,

and, the switching functions

-22-



av = {x ( T O ) sin Q[x3 - x 3
( T0)]}/v

2 ( 0 ) { o s [x3 3 ( 0 v1/ + (76 )

and

a= - X Xl(T
0
)[sin {Q[x

3
- x3(T0)] + x

3
} - sin x 3(T 0)]/u

u 1 0 3 3 0 3 3 0

- a x2 (T0 ) [cos {Q[x - x (T0)] + x (77)
2 0 3 3 0 3

- cos x3(T0)]/u + aU 

3 0 )]/ aC 0)

where 1, in equations (34 - 35) has been taken as + 1.

For the totally non-singular H trajectories, we set a u(T0) =

a (T
0
) = T

o
= 0 and x l(0) and x2(0) are given by equations (32) and (37)

for a specified x3f = x3(0).3f 3

The II* Trajectories

The H* trajectories are initially u-singular and integration of

equations (67 - 71) with u = 0 and To = 0 gives the singular arc

equations

x = xl(0O) cos [x3 -x3(0)] + x2(0) sin [x3 -x3(0)]

(78)

+ a sin x [x - x3(0)]/v + {cos[x3 - x3(0)] - l}/v
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x2 = - x
1
(0) sin [x3 - x3 (0)] + x2 (0) cos [x3 - x3 (0) ]

(79)

+ cos x 3[x3 - x3(0)]/v - {sin[x - x (0)]}/v

x
3

= x3(0) - VT ,(80)

and the switching functions

a = - [x
1
(0) sin [x3 - x 3 (0)] - x2

( 0 ){cos[x3 - x3 (0)]

(81)

- 1}]/v 

a =, (82)
u

where x (0) and x2(0) are given by equations (32) and (37) with x3 f =

x (0) = x3* on the left side and x3f = x3(0) = 27 - x3 on the right side.
3 3 3f 3 3

At T = T* the pursuer switches from singular to non-singular

control, and the remaining non-singular portion of the H* trajectory

is computed from equations (74 - 77) with T
o

= T* and with the "initial

conditions" x 1 (T0 ), x2 (T 0), x 3(T0), a u(T0), and Ov(T 0) computed from

equations (78 - 82) at T.

Some Observations for a Specific Case

The procedure suggested here of integrating the retro-equations

until T = T leaves open the question of control sequences for T > T .
S S

Numerical results (with a = .5, 6 = 2.5, R = 0.02) yield the following

observations: The point on a given trajectory corresponding to T = T
s
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always lies off the barrier. It follows then that a trajectory on the

barrier has at most one switch, and if a switch occurs it is from

singular to non-singular control (in the retro sense, i.e., f trajec-

tories). Figures 4 - 7 show, for the case of a = 0.5, 6 = 2.5, and

R = 0.02, the projection of trajectories onto the x - x and x - x
1 3 2 3

plane. The direction of motion indicated is that of forward integration.

In the retrograde sense, trajectories in Figures 4 and 5 start-

ing above and below x3f = 60 ° intersect. The points of intersection

generate a dispersal curve whose projection is shown in the figures. It

is of interest to note that for a point on the dispersal curve the time

to collision (in the forward sense) differs depending on the choice of

trajectories.

A second curve of interest shown on these curves is the singular

arc which intersects x3(tf ) at 300 °. The * type of trajectories all
3 f

switch to singular control upon intersecting this arc.

The trajectories of Figures 4 and 5 lie on the left red barrier

and the trajectories of Figures 6 and 7 lie on the left red barrier.

These barriers are surfaces which intersect in the manner depicted in

Figure 3 and points enclosed by the left and right red barrier and the

terminal surface are within the red zone. Projections of the points of

intersection are also shown in Figure 4 - 7.

While points which lie on the curve defined by the intersection

of the right and left barriers are guaranteed collision points for the

pursuer, his choice of control at such points (i.e. left barrier control

or right barrier control) is not arbitrary for certain situations.
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This condition is best illustrated by examining the motion of a

barrier trajectory in the vicinity of the intersection of barriers.

Figure 8 represents a type of motion which is common for a

number of trajectories on the barriers. Starting at some points on

the left or right barrier in the vicinity of, but not on the curve of

barrier intersection, the corresponding game surface trajectory moves

the system to an intersection point. For example, the point A (see

also Figure 5)* on the right red barrier is such a point. In the for-

ward sense, the game surface trajectory moves from A to B with the

pursuer and evader both using right barrier controls. If the pursuer

continues with right barrier control, the evader can then move the

system to the point C (outside the red zone) by simply continuing

with his right barrier control. However if the pursuer switches at B

to left barrier control then the system will either move down the left

barrier or into the red zone depending upon whether the evader either

uses left barrier control or some other admissable control. We conclude

then that the point B (a point on the intersection of the left and right

barriers) is a guaranteed capture point for the pursuer provided that he

uses left barrier control. This same sort of situation where the choice

of control at the intersection of barriers is not arbitrary occurs at a

number of other intersection points. Indeed this condition will present

itself at any point where the barrier intersection slope is the same

sign, but of greater magnitude than trajectory slopes.

*Points A, B, and C are projections onto x
2

- x
3

of points that
lie on the same trajectory.
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THE GREEN BARRIER - A PROBLEM IN CONTROLLABILITY

The green barrier separates the green and yellow zones. Points

within the yellow zone represent states from which the pursuer can

guarantee collision with the evader, provided that the evader does not

perform any manuevers. Thus the green barrier represents points control-

lable (by the pursuer) to the terminal set with the evader's controls

set at v = 0 [with the system equations given by (12 - 14)].

The connection between trajectories on the boundary of control-

lable (or reachable sets) and abnormal trajectories for an optimal

control problem has been pointed out and discussed by several authors

(e.g., Ref. 3; Ref. 5, p. 350; Ref. 8, p. 206; Ref. 9, p. 138; Ref. 10,

p. 41). Since we are primarily concerned with determining boundaries

between various sets of points rather than specific control laws, we

will avoid discussing the set up of an optimal control problem and its

associated abnormal arcs. Rather we can obtain the desired boundaries

directly by defining a ControlZable Surface (similar to the game surface

for the red zone) as a surface with the property that if the control u

maintains a trajectory in the surface then any other admissible control

must move the system either on the surface or to one side of it. This

situation is depicted in Figure 9. If two such surfaces emanating from

the terminal set intersect (perhaps at infinity) then the points en-

closed by the terminal set and the two controllable surfaces may

contain points in which the pursuer can guarantee a collision with the

evader.
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Green Barrier Necessary Conditions

The results of references (3), (5), and (8) may be worded to

apply to controllable surfaces as follows: if u is a controllable

surface control for tECO,tf] for the dynamical system

x = f (x,u) (83)

T n T r
where x = [lx x ]6 G C E , u = [u ...u ]E U C E and where the

1 n n 1 r

function f is of class C1 on GxU and if we let

T
H = X f (x,u) (84)

T n
where A = [1 ... ] E E , then there exists a non-zero continuous

1 n

solution of the adjoint equation

*T =- AH (85)
Ox

such that for any control U other than u

H(X,x,u) < H(X,x,U) (86)

H(A,x,u) = (87)

for all tE [0,tf]. Furthermore, for the problem under consideration

(boundary of the yellow zone for the cylindrical collision surface) the

vector X at the terminal surface is in the direction of the outward

normal to the surface.
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Setting v = 0 in (12), (13), and (14) we obtain for H

H 1 sinx3 + 2 (Ocsx3 - 1) -3 u (88)

with the adjoint system

Al = constant (89)

A2 = constant (90)

3 = a(a2 sinx3 - cosx3) (91)

Green Barrier Control

The function H is linear in u with the switching function

au = - A3 the same as for the red barrier analysis. The time deriv-

atives u and u are again given by (28) and (29) so that we can again
u u

conclude that singular pursuer control is given by u = 0. In accord-

ance with (86) we conclude

+ 6if a < 0
u

u= - 6 if u > 0 (92)

0 if a E 0
u

The requirement on the direction of the X vector at termination being

the same as before results in the same analysis as before for the final

value of the control at termination. That is, when X
l
f > 0, uf is

given by (53) and Xlf < 0, uf is given by (54).
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Retrograde Integration

The controllable surfaces emanating from right and left side of

the collision surface are called the right and left green barries re-

spectively. Trajectories which lie on these barriers are obtained by

integrating the equations of motion and the adjoint equations backward

from the collision surface using v = 0 and u control from the minimum

principle (92). The initial value for u control is given by (53) and

(54).

The equations for backwards integration are given by

C

x1 (T) = - a sin x
3

(T) ,(93)1 ~~~~~~~~~~~~~~~~(3)

on0

X2 (T) = - a cos x (T) + 1 , (94)

0

x
3
(T) = u , lul <.6 (95)

0so

3(T) = {X
1
cos x3 (T) -

2
sin x3 (T)} ,(96)3 1 3 2 3 (96)

with the "initial conditions" for these equations given by (34 - 37)

with the final time interpreted as an initial time.

Let [T , T ] be the (retro) time interval over which a does
0 s u

not change sign, i.e., starting with a (T
0
) = 0 define

u0

T A first time a = 0 after being non-zero . (97)s : u

Both H and R type of trajectories result from the backward

integration. As before, the I trajectories are obtained by integrating

-36-



the retro-equations using non-singular control on the interval

0 < T < T . If T* is the (retro) time at which the pursuer control
-- -5 

switches from singular to non-singular, then the I trajectories are

obtained by first integrating the retro-equations using singular control

*
on the interval 0 < T < T < T and continuing integration using non-

singular control on the interval T < T < T .
-5 

o

For all TF[T0 , T ] x3 (T) is constant so that

d( ) d( 9
-d= u - . (98)
dT-1 ~ u d x

3

Using this relation, the retro-equations become

x = - (a sin x3 )/u ,(99)

x
2

= (1 - cos x3)/u , (100)

2 3c Xcox-

3 1 cos x3 - k2 sin x3 )/u . (101)

The change in (independent) variable given by (98) is subject

to two constraints:

x3 (T) must be such that T > 0 and

u 37 0u~0.

In particular the change in variable does not apply for u-singular

control.
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The 1 Trajectories

Integration of equations (99 - 101) gives the non-singular

trajectory (subarc) equations

xi = x1(T 0 ) + a[cos x
3

- cos x3(T 0 )]/u , (102)

X2 = x2 (T
0
) - a[sin x3 - sin x3(T0 )]/u +

(103)

[x3 - x3 (T 0 )]/u ,

and the switching function

u = c{X (T ) [sin x3 -sin x (T )] +u 1 0 3 30

(104)

x2(T
0
) [cos x3 - cos x3(T0)]}/u + u(T0)

For the totally non-singular I trajectories, we set a (TO ) =

To = 0 and x l(0) and x2(0) are given by equations (32) and (37) with

x3f = x3 (0).

*
The H Trajectories

The I retro-trajectories are initially u-singular and inte-

gration of equations (99 - 101) with u = 0 gives the u-singular (subarc)

equations

x
1

= x (0) - O T sin x3 (0) , (105)~~~~~~~~~~~~~~~(1 0 5 3
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x2 = x2
(0) + [1 - a cos x

3
(0)]IT ,

x3 = x3(0) , (107)

and the switching function

a = 0, (108)
U

where x l(0) and x2(0) are given by equations (32) and (37) with x3 f =

x3(0) = x* on the left side x3 f = x3(0) = 27r - x3* on the right side.

At T = I the pursuer switches from singular to non-singular

control, and the remaining non-singular portion of the 1* trajectory

is computed from equations (102 - 104) with T0 = T and the "initial

condition" x l(T
0
), x 2

(T0), x
3 ( T

0
) , and a u(T

0
) computed from equations

(105 - 108) at T .

Some Observations for a Specific Case

Figures 10 and 11 show (for the case where a = 0.5, 6 = 2.5,

and R = 0.02) the projection, onto the x1 - x2 and x2 - x3 planes, of

trajectories on the right portion of the green barrier. Figures 12 and

13 show the corresponding projections of the left green barrier. The

dispersal curve shown is the intersection of the surface generated by

trajectories which terminate (in the forward sense) at values of

x
3

> 60 °, with the surface generated by trajectories which terminate

with x3 < 60 °. As before, the time to collision is discontinuous across

the dispersal curve with the trajectories of least time being from

-39-
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points on the dispersal curve terminating at values of x3 greater than

60 °.

We make the final observation that for any case, points on the

green barrier do not belong to the green zone.

DISCUSSION AND ADDITIONAL RESULTS

The primary results to be presented in this section are x
3

cross-sections of the red and green barriers. A review of concepts and

physical meanings will first be given.

A Review

The x
1

- x 2 - x
3
co-ordinate system (see Figure 1) is fixed to

the evader and rotating with him in such a way that his velocity vector

is always aligned with the positive x2 axis. The positional coordinates

x
1

and x2 have been non-dimensionalized with the result that a point in

the x
1

- x2 plane with co-ordinates, say, x1 = 0 and x2 = + 1 corresponds

to the pursuer being directly in front of the evader at a distance equal

to the evader's minimum turning radius. Such a point represents the

current position of the pursuer with respect to the evader and the third

coordinate, x3, is the clockwise angle from the evader's velocity vector.

Note that x3 is not the angle from the positive x2-axis to the relative

velocity of the pursuer as would be seen on the evader's radar. Such a

"relative heading" angle would depend not only on x3, the angle between

the absolute velocity vectors, but also on the current turning rates of

the pursuer and evader.
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As previously mentioned, the x
1

- x2 - x3 state space of the

system is divided into three regions which are depicted in Figure 14.

They are the red zone, the yellow zone, and the green zone. The red

and yellow zones are separated by a surface called the red barrier.

Similarly, the yellow and green zones are separated by a (two-piece)

surface called the green barrier.

A collision is said to occur when the pursuer is at or within a

given radius R of the evadar. This defines a "collision" surface,

which is a cylinder in state space. The red barrier is constructed as

the locus of game surface trajectories which terminate tangentially on

the cylinder. Similarly the green barrier is constructed as the locus

of controllable surface trajectories which terminate tangentially on

the cylinder.

Calculation of Barrier Cross-sections

The values of the speed ratio (a = 0.5), the turning rate ratio

(6 = 2.5), and the non-dimensional collision radius (R = 0.02) used in

constructing the red and green barrier cross-sections (Figures 18 - 30)

and other figures presented in this report were chosen so that a compar-

ison with published data (Ref. 11) can be made. These parameter values

are also applicable to the specific case where the evader is a Boeing

727 in a holding pattern at 230 knots and the pursuer is a Piper Com-

manche in an approach pattern at 110 knots. The 727's minimum turning

radius (a non-dimensional distance of 1.0) for this case is about 2,400

feet so that the capture or collision circle around the evader has a

-45-



FIGURE 14 A QUALITATIVE SKETCH OF THE RED AND GREEN BARRIERS
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diameter of about 100 feet, i.e., slightly less than the wing span of

the 727.

Although the red and green barriers have many similarities, the

left and right green barriers, where the evader's turning rate is every-

where zero, are geometrically "nicer" surfaces than their red barrier

counterparts. Figure 15 shows a sketch of the three dimensional right

green barrier. Regions I and III are "curved" (differently), but regions

II and IV are planar. These planes intersect along the dispersal arc

and along the x
3

= 300° singular arc.

This planar phenomenon occurs on the left green barrier as well

as on the right, but it does not occur anywhere on the red barrier. It

is a direct consequence of the fact that the evader executes straight

line motion on the green barrier thus enabling the pursuer, if he is

"far enough ahead" of the evader, to come to a constant-line-of-sight

collision course heading in which both aircraft fly in straight lines.

This situation does not occur on the red barrier where the evader is

always turning to avoid a collision.

As an example of a collision encounter, consider the case

where the pursuer is initially on the right green barrier in Region I

(Point A, Figure 15) at a heading of x3 = 120° with respect to the

evader. The evader, by hypothesis, does not attempt to avoid a colli-

sion and remains on his initial course and heading while the pursuer

executes a hard right turn. Because the pursuer starts on the green

barrier, the encounter ends tangentially, that is, the pursuer's

-47-
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trajectory is tangent to the collision surface at the point of contact.

Figure 16 shows the resulting trajectory as seen on the evader's radar.

Note that the pursuer's velocity vector is not tangent to the radar

trajectory, i.e., x3 is not the relative heading angle as seen on the

evader's radar, but the clockwise angle from the evader's absolute

velocity vector (the positive x2 - axis) to the pursuer's absolute

velocity vector. Also note that each point on the trajectory corre-

sponds to a different value of x3 . Therefore, at each instant of time

the appropriate green barrier cross-section is continuously changing

with the result that the evader can not observe the entire encounter

by charting the motion of the pursuer with respect to only one barrier

cross-section.

From initial positions on the right green barrier in Region I,

as in the previous example, or in Region III, the pursuer executes a

hard right- or left-hand turn, respectively, and the collision occurs

tangentially while the pursuer is still in the turn. If, on the other

hand, the initial state of the system is on the right green barrier in

Regions II or IV, the pursuer executes a hard right or left turn,

respectively, until he comes to a heading of x3 = 300° . He then main-

tains this heading until the collision occurs. Figure 17 shows a

typical trajectory from Region II as seen on the evader's radar.

At this point the exact nature of the discontinuity in the

time to collision across a dispersal curve can be clarified. Consider

the trajectory, (I in Figure 15) on the right green barrier, which

terminates at x3 = 300° and separates Region I and II. This trajectory
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FIGURE 17 A REGION II RIGHT GREEN BARRIER COLLISION

ENCOUNTER SEEN ON EVADER'S RADAR
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may be thought of as starting from the point where it intersects the

dispersal curve. Also consider the Region IV trajectory (I in Figure

15) starting from this same point. Along the I trajectory the pursuer

executes a hard right turn (u = - 6) until he comes to a heading of

x
3

= 300° . At that instant the collision occurs. The elapsed non-

dimensional time is given by equation (95) as approximately 7/6

(Ax3 = 180°). On the other hand the Region IV trajectory requires

approximately the same amount of time just to reach the x3 = - 60°

(300°) singular arc heading. The pursuer must then consume additional

time flying at this heading before the collision occurs.

The dispersal curves on the left- and right-hand portions of

the red and green barriers, in addition to being curves across which

the time to collision is discontinuous, are also loci of points where

retro trajectories using barrier control would leave the barriers.

For example, consider the right green barrier trajectory T in Region I

(Figure 15) which terminates at x
3

= 300° . If the trajectory is

traversed in the opposite direction, by integrating the equations of

motion backwards from the collision surface, point B on the dispersal

curve will be reached. This portion of the trajectory lies entirely

on the right green barrier. If the backwards integration is continued

beyond the dispersal curve, the trajectory will leave the barrier and

enter the yellow zone.
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Barrier Cross-section

Figures 18 - 30 are x3-cross-sections of the state space, show-

ing the red, yellow, and green zones and the red and green barriers

separating them, for values of X3 ranging from x = 0° to x3 = 180° in

15° increments. Figure 31 shows the barrier cross-sections at x3 = 270°

(180° + 90°) for a comparison of this figure with the x
3

= 90° cross-

section. Any cross-section at x
3

= 180° + y can be obtained from the

cross-section at x3 = 180° - y by replacing x1 by - x1.

Examination of Results

Examination of the 0° and 180° cross-sections (Figures 18 and

30) reveals that the horizontal distance from the x2 axis to the barrier

in both cases increases along the x2 axis, reaches a maximum, and then

decreases until the right and left red barriers intersect. In addition

the maximum width is of the same magnitude for both of these red

barriers. This "bulge" in the red barrier is best understood by

considering the expanding nature of the x3 = 0° green barrier cross-

section (Figure 18).

Suppose the pursuer is initially in the green zone on the x
1

axis slightly to the left of the collision surface, say at x1 = - 0.15,

and moving in the same direction as the evader. Let the pursuer exe-

cute a hard right turn in an attempt to cause a collision and let the

evader, the faster but less maneuverable of the two aircraft, continue

in straight line motion. By the time the pursuer's turn brings him to

the x2 - axis, he will be behind the faster evader and no collision will
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occur. This same result occurs for points on the xl-axis arbitrarily

close to the capture surface. The x
1
width of the green barrier at

the xl-axis is then simply the diameter of the capture circle. On the

other hand suppose the pursuer, still moving in the same direction as

the (non-turning) evader, is well in front but only slightly to the

left of the evader, say at xl= 0.15 and x2 = 0.75 (yellow zone); from

this position the pursuer can execute a hard right turn until a

constant-line-of-sight collision course is obtained along which colli-

sion ultimately occurs. In fact the pursuer has enought time to exe-

cute such a maneuver from initial points further to the left of the

evader with the limiting point being on the left green barrier. Thus

the green barrier "expands" in front of the evader.

It is seen, from the x3 = 0° cross-section, that the sides of

the green barrier are straight lines except in the vicinity of the

capture circle where they are portions of cycloids. From all initial

points on the linear region of, say, the left green barrier, the

pursuer makes a hard right turn until a constant-line-of-sight colli-

sion heading of x3 = 60° is obtained. The resulting collisions all

occur at the same point on the capture circle (see Figures 12 and 13).

For initial points on the green barrier nearer the capture circle,

however, the pursuer does not achieve a constant-line-of-sight colli-

sion heading and the resulting collisions occur at various points of

the capture circle. In these cases the sides of the green barrier are

curved near the capture circle.
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These same expansion and curvature phenomena occur on the-red

barrier also, but the expansion differs somewhat by the fact that the

evader is active on the red barriers. He is turning in an attempt to

thwart the pursuer.

Examine now the x3 = 90° cross-section (Figure 24). In this

case, the pursuers velocity vector is intially directed parallel to

the positive x1 axis. If the pursuer is far to the right, the evader

will be out of range by the time the pursuer performs a maneuver and

no collision is possible. Thus the red and yellow zones are pre-

dominantly in the left half-plane where the danger of a collision is

highest. The "corner" on the right green barrier is the point on the

dispersal arc of Figure 11 at x3 = 90°. Below the corner the pursuer

turns hard left; above he turns hard right. The x3 = 90 ° cross-section

is typical of all cross-sections from x3 = 0° to x3 = 180° with the

exception that corners appear in the right green barrier only between

x3 = 60° and x3 = 120° (Figure 11, the barrier intersections are asymp-

totic to x3 = 120°). There are also corners in the right red barrier

but they occur only in the interval x3 = 52° to x3 = 60 °, corresponding

to points on the disperal curve "below" barrier intersections (Figure 5).

In cases where red barrier corners do occur they are almost undetectable.

As previously mentioned, one of the major differences in the

red and green barriers is that the right and left red barriers inter-

sect. Consider the case where the pursuer is initially on the x2-axis

far in front of the evader on a head-on (x = 180°) collision course

(Figure 30). If the pursuer is sufficiently far in front of the evader,
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the faster evader has ample time to turn and avoid a collision. Thus,

beyond a certain distance, points on the x2-axis can not belong to the

red zone; i.e., the right and left red barriers must intersect.

In examining the various cross-sections it is noted that the

red zone is largest at the x3 = 180° cross-section. For the Boeing 727

vs. Piper Commanche collision encounter, the x
3

= 180° red zone extends

out to about 2,200 feet. In a head-on collision encounter this distance

will be covered by the two aircraft in approximately three seconds!

Thus the evader must never wait for the pursuer to approach the red zone

before performing a collision avoidance maneuver, but must perform a

maneuver while the pursuer is still in the yellow zone.

A Strategy for the Yellow Zone

Figures 32 to 38 show the green zones for a = 0.5, 6 = 2.5,

R = 0.02 superimposed on the red zones for a = 0.5, 6 = 2.5 and various

values of R. On each cross-section the locus of intersections of the

right and left red barriers is a curve labeled A. If the initial state

of the system is in the yellow zone to the left or right of A the

evader should execute a hard right or left turn until the pursuer has

at least moved into the green zone. If this strategy is continued

sufficiently far into the green zone, the evader will maximize the

minimum possible distance of closest approach.
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Unknown Pursuer Heading

As previously mentioned, an entire collision avoidance maneuver

can not be observed with respect to only one x3 cross-section of the

red and green barriers since x3
changes during the maneuvers. Thus the

use of the cross-sections presented so far in this report requires that

the evader have knowledge of the pursuer's true heading. If this data

is not available, but the turning rate ratio (6) and the velocity ratio

(a) are, then the evader may make use of Figure 39 in which the red zone

with unknown pursuer heading is the union of all true red zones for

x
3

= 0° to x3 = 360°. Thus, from points within the "red zone" of

Figure 39 there exists at least one heading for the pursuer such that

he can cause a collision regardless of any evasive maneuvers taken by

the evader. The green zone of Figure 39 is the smallest of the true

left and right green zones and is composed of the x3 = 60° left green

zone and the x3 = 300° right green zone. From every point in the green

zone (the green zone excludes the green barrier) of Figure 39 it is

impossible for the pursuer to cause a collision with the non-turning

evader; this green zone is "safe" regardless of the pursuer's heading.

However since a near-miss is still possible from the green zone, a

factor of safety can be built into the results by simply increasing

the size of R to met whatever requirements are deemed necessary.

Ship Collision Avoidance

While the character of the results will remain the same for

different values of a, 6, and R (provided a < 1, 6 > 1) the size and
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shape of the red and green zones do vary somewhat dependent on the

parameters used. To illustrate this point, parameters were chosen

for a typical naval ship collision avoidance problem*(a = 0.8, 6 = 3.2,

R = 0.1) and the red and green barriers calculated. Results are shown

in Figure 40 for the x3 = 180° case. The "bulge" in the red zone is

much more apparent in this case.

A Comparison of Results

Meier (Ref. 11, p. 514-521) obtained results for the "game of

two cars" (Isaacs, Ref. 2) treating it as a game of degree. The "game

of two cars" was formulated here as a game of kind and the solution

used for the determination of the red barrier. The values for the

parameters used here and by Meier are the same. Meier used a geometric

construction to solve his problem, while an analytical approach was used

here. The cross-sections obtained here agree with those published by

Meier. However the strategies presented by him do not agree entirely

with the strategies suggested here. Different strategies are not un-

expected due to the fact that the strategies presented here are those

for a game of kind rather than a game of degree. The strategies used

here mini-max a Hamiltonian function with no performance index and

keep the system on a barrier. Meiers strategies should mini-max a

Hamiltonian function with a minimum time performance index and the

system need not remain on the barrier.

*Evader - "Enterprise" Class Aircraft Carrier.

Pursuer - "Forrest Sherman" Class Destroyer.
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